

White Dwarf Matter

Didier Saumon (Los Alamos National Laboratory, USA) Simon Blouin (U. of Victoria, Canada) Pier-Emmanuel Tremblay (U. Warwick, UK)

High Energy Density Science Center seminar, LLNL 21 September 2023

LA-UR-23-30516

NIS

Outline

White dwarf stars

- Origin and nature
- Astrophysical significance
- Physical conditions

Four problems related to WDM

- Electron thermal conductivity
- Inter-diffusion of mid-Z elements in dense He plasma
- Ionization and opacity of He
- EOS of partially ionized carbon

An invitation

What is a white dwarf?

• End state of the evolution of 1 – 8M_{sun} stars

H/He star

Nuclear fusion H \rightarrow He \rightarrow C/O

11 Gyr of evolution

Mass loss H/He envelope is lost

A cooling C/O star

A mature field of stellar astrophysics

- White dwarfs are common
 - ~250 000 known
 - ~18 000 well-studied
- High quality data available (spectra, luminosity and color distributions, space motion, distances)
- Observations

WDM

Effectively constrain models

White Dwarf Stars in Globular Cluster NGC 6397

Hubble Space Telescope ACS/WFC

NASA, ESA, and H. Richer (University of British Columbia)
STScI-PRC07-42

White dwarf cosmochronology

Age of stellar populations

History of star formation in the Milky Way

- White dwarf cosmochronology
- Type la supernovae / WD mergers

Low mass mergers don't explode: hot DQ

- White dwarf cosmochronology
- Type la supernovae / WD mergers
- **Pulsating white dwarfs** Probe interior structure with

asteroseismology

- White dwarf cosmochronology
- Type la supernovae / WD mergers
- Pulsating white dwarfs
- **Composition of very old exoplanetary systems** Elemental composition of infalling solid material

- White dwarf cosmochronology
- Type la supernovae / WD mergers
- Pulsating white dwarfs
- Composition of very old exoplanetary systems
- These applications depends on the reliability of WD models! (EOS, opacity, transport coefficients)

Three main types of white dwarfs

We are primarily concerned in the physics of C/O mixtures, H, He and traces of heavier elements

Physical conditions in white dwarfs

Physical conditions

- Photosphere ("surface"): "normal conditions" T ~ 0.5 10 eV ρ ~ 10 $^{-4}$ 0.1 g/cm 3
- Center (C/O core): "extreme conditions" $T_c \sim 10^2 - 10^3 \text{ eV}$ $\rho_c \sim 10^6 \text{ g/cm}^3$ $P_c \sim 10^{13} \text{ Mbar}$ Fully ionized, strongly degenerate plasma

Zone of partial ionization (WDM)

Rapid variations in EOS and opacity Trigger convection near surface Affect mixing, cooling rate, and drive pulsations Where the EOS and opacity are most uncertain!

Physical conditions in "H-rich" white dwarfs of 0.6M_{sun}

Physical regimes

- Electron degeneracy $\theta = k_B T / \epsilon_F$
- Ion Coulomb coupling $\Gamma = \frac{Z^2 e^2}{ak_B T}$
- Relativistic electrons $x_r = p_F/m_ec$
- Ion quantum effects $\Lambda = \lambda_{th}/a$
- Partial ionization

Electron thermal conductivity of H and He for θ =0.1 – 1 Application: Ages of white dwarfs

Thermal conductivity controls the flow of energy from the degenerate core to the surface

- Well understood in highly degenerate regime (θ<<1, Γ>>1) and in Spitzer-Härm regime (θ>>1, Γ<<1) (Cassisi et al. 2007)
- Shaffer et al. (2020): Extend Spitzer-Härm to smaller θ and larger Γ with Chapman-Enskog solution of transport equation using
 - quantum Landau-Fokker-Plank collision operator (Daligault 2018)
 - potential of mean force from an average atom model
- Results in higher thermal conductivity
- Shortens the cooling time by ~1Gyr for H-rich,
 - \sim 1/3 Gyr for He-rich. A big effect!

Electron thermal conductivity of H and He for θ =0.1 – 1 Application: Ages of white dwarfs

• Cassisi et al. (2021)

Criticize the validity of qLFP model for $\theta < 1$

Uncertainty in electron thermal conductivities for $0.1 < \theta < 1$ can affect age from 0 to 1Gyr!

What is needed?

• Better theory of electron thermal conductivity of H and He for $\theta \sim 0.1-1$

Interdiffusion coefficients

Application: Composition of exoplanetary systems

diffusion

Relative diffusion velocity:

 x_1

$$w_{12} = \boxed{D_{12}}(1+\gamma) \left[-\frac{d \ln x_2}{dr} + \left(\frac{A_1 Z_2 - A_2 Z_1}{Z_1 + \gamma Z_2}\right) \frac{m_0 g}{k_B T} + \left(\frac{Z_2 - Z_1}{Z_1 + \gamma Z_2}\right) \frac{d P_i}{dr} + \alpha_T \frac{d \ln T}{dr} \right]$$

$$\gamma = \frac{x_2}{x_1}$$
chemical
barodiffusion
thermal

diffusion

Interdiffusion coefficients

Application: Composition of exoplanetary systems

- White dwarf models require the coefficients of inter-diffusion D_{12} and of thermal diffusion α_T
- Typically consider a trace of a mid-Z element (C, Na, Ca, Mg, Si, Fe...) in bath of fully ionized He
- Conditions of interest: T ~ 10 300eV ρ ~1 3000g/cm³
- Mid-Z element is typically partially ionized: What is Z_2 (or the ion-ion interaction potential)?

$$w_{12} = D_{12}(1+\gamma) \left[-\frac{d \ln x_2}{dr} + \left(\frac{A_1 Z_2 - A_2 Z_1}{Z_1 + \gamma Z_2} \right) \frac{m_0 g}{k_B T} + \left(\frac{Z_2 - Z_1}{Z_1 + \gamma Z_2} \right) \frac{d P_i}{dr} + \frac{d \ln T}{dr} \right]$$

chemical
diffusion
barodiffusion
thermal
diffusion

Interdiffusion coefficients

Application: Composition of exoplanetary systems

• Current D_{12} and α_T are from Paquette et al. (1986)!

What is needed?

- New, more advanced models and tables of diffusion coefficients
- Benchmark ab initio simulations to validate simpler models of D_{12} and α_T
- Experiments to measure an effective Z_2 or D_{12} or α_T to constrain models

Ionization and opacity of He

Applications: Atmospheres, ages of He-rich white dwarfs

He opacities in cool white dwarf atmospheres

- Dominated by continuum absorption
 1) He + e free-free
 2) He₂⁺ bound-free
 3) He + He + He Collision-induced absorption
- Depends sensitively on the very low degree of ionization of He ($n_e/n_{He} \sim 10^{-10} 10^{-6}$)
- T ~ 0.5eV $\rho{\sim}0.5g/cm^3$

Non-ideal effects, weak pressure ionization Very hard to model!

Ionization and opacity of He

Applications: Atmospheres, ages of He-rich white dwarfs

He opacities in cool white dwarfs

- Experiment: heated DAC (McWilliams et al. 2015)
 P=22 and 52GPa T=3200 16000K
- Insulator-poor conductor transition at ~10000K
- Band gap ~ 11eV vs T < 1eV in atmosphere!
- Kowalski et al. (2007) combined Chemical model of ionization Ab initio simulations band gap closure vs (Τ,ρ)
 - e He interactions
 - Limited validation!

Ionization and opacity of He

Applications: Atmospheres, ages of He-rich white dwarfs

What is needed

• Better models and more extensive experiments to answer:

1) What is n_e/n_{He} ?

2) How are the absorption cross-sections affected by density?

EOS of partially ionized carbon

Applications: WD+WD mergers and their pulsations

Pulsations of "carbon" white dwarfs

- Driven at the bottom of the superficial convective layer
- Convection caused primarily by the physics of partial ionization (EOS, opacities)
- EOS tables untested in this regime
- It is now possible to reach those conditions experimentally for carbon!

EOS of partially ionized carbon

Applications: WD+WD mergers and their pulsations

Experimental test of EOS models with the Gbar platform at NIF (Jenei et al.)

- Spherical target inside hohlraum. Converging spherical shock wave
- Radiograph: continuous record of ${\rm U}_{\rm s}$ and $\Delta\rho$ at shock front: Hugoniot states

3 Diamond shots so far

Preliminary analysis (D. Swift)

- Data spans 0.3 1.6Gbar
- Previous diamond Hugoniot data \leq 0.8Gbar

Many other problems of interest

- Combined Zeeman-Stark line broadening models and experiments
- Ionization and opacity of He ($\rho \sim 0.1-1 \text{ g/cm}^3$ T~0.1–1eV)
- Dissociation equilibrium of diatomic molecules (H₂, C₂, He₂⁺, HeH⁺)
- EOS in partial ionization/WDM regime for C (and He and O)
- Line broadening of strong optical transition of mid-Z elements
- Broadening of optical lines of He by collisions with He atoms
- Modeling and measurements of the distortion of C₂ molecular Swan bands in dense He and strong magnetic fields
- Crystallization dynamics and lattice structure in crystallized white dwarfs for mixtures, including impurities
- Robust calculations of high-Z (uranium) impurity fractionation in crystallizing white dwarfs
- Inter-diffusion coefficients: benchmark ab initio simulations and experiments
- Electron thermal conductivity of H and He in the $\theta \sim 0.1-1$ regime
- Experimental measurements of the absorption coefficient of dense, heated He
- Experimental validation of the latest Stark line shapes of H and He
- Spectral line formation in an inhomogeneous convective medium
- Experimental measurements of the H₂-He collision-induced absorption
- 3D hydrodynamics simulations of convective overshoot and thermohaline instabilities
- Magnetic effects on convection, envelope structure, vertical diffusion, horizontal spreading of accreted material

Current challenges in the physics of white dwarf stars

A review (2022)

A workshop (2024)

Saumon, Blouin, Tremblay, Physics Reports 988, 1-64 (2022)