LLNL's HEDS Center arranges classes and short courses for students and LLNL staff on various HEDS topics. Upcoming courses are described below.

### Extreme Physics Graduate-Level Course

**Instructor: Dr. Jeff Colvin, LLNL **

**Course description: **Most matter in the universe--everything from the deep interior of planets to the matter of stars--is at high temperature and/or high pressure compared to the matter of our ordinary experience. Modern high-power lasers, pulsed-power machines, and large particle accelerators allow us to create and study in the laboratory matter at extreme conditions, and to tailor such matter for fusion energy production and other applications. This course provides the student with an introduction to the physics of matter at extreme conditions, as well as an introduction to the computational techniques required to do numerical simulations of the properties and behavior of matter at extreme conditions.

**Offered to: **LLNL staff for professional development and students for credit.

**What the student will learn: **Basic properties of dense and classical plasmas; ionization physics; the physical mechanisms by which laser light is absorbed in matter; the basics of fluid dynamics (hydrodynamics) and shock-wave formation and propagation; radiation transport in matter; and the basics of numerical simulation of radiation-hydrodynamics phenomenology.

**Course schedule:** Fall quarter 2017 consists of 20 1.5-hour class sessions, one class per day on Tuesdays and Thursdays between Thursday, September 28 and Thursday, December 7, 2017, except for Thanksgiving Day (Thursday November 23). Classes will be held from 11:30 a.m. to 1 p.m. Pacific time.

**Attendance options: **Classroom attendance (LLNL or UCSD) or WebEx live or recorded viewing. LLNL location: T1879. UCSD location: Engineering Building 2, R584.

**Textbook: **

*Extreme Physics*by Jeff Colvin and Jon Larsen, Cambridge University Press, 2013.

**Syllabus:**

- Introduction to the course, extreme physics environments, how to achieve extreme conditions
- Properties of dense and classical plasmas--particle distribution functions, kinetic theory, electron-ion collisions (Assignment 1: example problems in kinetic theory)
- Collective plasma effects
- EM wave propagation and laser energy deposition in matter (Assignment 2: example problems and solutions in laser-matter interaction physics)
- Basics of hydrodynamics--the viewpoint of flux, derivation of the Navier-Stokes equations, compression and rarefaction waves (Assignment 3: example problems in hydrodynamics)
- Hydrodynamic instabilities (Assignment 4: example problems in hydrodynamic instabilities)
- Shocks--Hugoniot relations, entropy and adiabaticity, blast waves
- Shocks in solids--elastic-plastic behavior, material constitutive models (Assignment 5: example problems in shock wave physics)
- Equation of state (EOS)--thermodynamic relations, EOS for plasmas and gases
- Equation of state--EOS for solids, crystal structures, phase transitions (Assignment 6: example problems in EOS physics)
- Ionization--electron structure of atoms, Saha and other ionization models (Assignment 7: example problems in ionization physics)
- Thermal energy transport--gradient-driven transport, conductivity coefficients, degeneracy effects (Assignment 8: example problems in thermal energy transport)
- Radiation energy transport--Planck distribution, radiant flux in the Navier-Stokes equations, absorption coefficients
- Radiation energy transport--Kirchoff's Law, derivation of the radiation transfer equation, Pn, SN
- Radiation energy transport--diffusion approximation, local thermodynamic equilibrium, Marshak waves and hohlraums
- Radiation energy transport--material opacity and averaging over photon frequencies (Assignment 9: example problems in radiation energy transport)
- Radiation-hydrodynamics computer codes--different code formulations, basic design philosophy and structure, regions of applicability, finite difference approximations, determining the mesh
- Radiation-hydrodynamics computer codes--accuracy, convergence, consistency, and stability; operator splitting (Assignment 10: example problems in numerical simulation)
- Review and discussion of example problems and solutions in extreme physics
- More review and discussion of example problems and solutions in extreme physics

**Grading policy: **10 homework assignments that will count for 60% of final grade and a final exam the week of December 11, 2017, that will count for 40% of final grade.

**For more information: **Contact fbeg [at] ucsd.edu (Farhat Beg) (instructor), colvin5 [at] llnl.gov (Jeff Colvin) (guest lecturer), or gwcollins [at] ucsd.edu (Gilbert Collins) (teaching assistant).

### Short Courses

#### Introduction to High-Energy-Density Laser-Plasma Experiments and Diagnostics

This several-week short course surveys the basics of laboratory high-energy-density (HED) plasmas produced by energetic lasers, and principles of several diagnostic instruments used to measure their properties. The course is intended for advanced undergraduates and beginning graduate students interested in pursuing graduate studies in HED physics, and for scientists trained in related fields who seek a broad knowledge of HED physics. At the end of the course, students are expected to be familiar with the field and able to begin studying individual topics in detail, with a holistic understanding of the key principles and relationships linking the various sub-disciplines.

Course topics include:

- Introduction to laser matter interaction physics in the “short pulse” (picoseconds) and “long” (nanoseconds) pulse regimes
- Principles of laser-driven HED experimental techniques
- Physical Principles of Diagnostic Instruments for High-Energy-Density Plasmas
- Current HED experiments using lasers, and their underlying physics

**About the instructor:**

*More course information to follow.*

#### Interaction of X Rays with Matter

In this course, we will provide an overview of the interaction of x rays with matter, ranging from low-intensity continuous-wave to high-intensity short-pulse x-ray radiation as produced by x-ray free-electron lasers. We will discuss the relevant physical processes, including the interaction of the x-ray field with electrons, the coupling of the electrons to the ions, and the x-ray induced microscopic and macroscopic changes in materials. As far as time allows, a full quantum mechanical description of the interaction of radiation with matter will be given. Several applications taken from the recent scientific literature will be discussed.

**About the instructor:**

*High-Intensity X-Rays--Interaction with Matter*and

*Nonrelativistic Quantum X-Ray Physics*books, published by Wiley in 2011 and 2015, respectively.

*More course information to follow.*