Back

Atmospheric, Earth, and Energy

Meet experimental scientist Gaby Davila Ordonez

Gaby Davila Ordonez has always had a knack in learning new things, contributing to make a difference and helping others succeed. Originally from Venezuela, Davila Ordonez, grew up with three sisters in a family who cultivated coffee in a small town in the state of Mérida called La Azulita.

LLNL and Korea Institute of Science and Technology to collaborate

Leaders at Lawrence Livermore National Laboratory (LLNL) and the Korea Institute of Science and Technology (KIST) signed a memorandum of understanding (MOU) on Monday to collaborate on basic science and technology in the renewable energy, climate science, data science and characterizations arenas. Under the MOU, KIST will have office space in the Livermore Open Campus…

Going deep: New ground motion model more accurately simulates earthquakes, explosions

Lawrence Livermore National Laboratory (LLNL) scientists have created a new adjoint waveform tomography model that more accurately simulates earthquake and explosion ground motions. The paper, published in the Journal of Geophysical Research, was selected for an Editor’s Highlight. Seismic tomography is a method to estimate the inaccessible three-dimensional (3D) seismic…

LLNL partners with city of Livermore to reduce carbon emissions

Lawrence Livermore National Laboratory (LLNL) has signed a memorandum of understanding (MOU) with the city of Livermore to collaborate on advancing climate action in Livermore and build community-wide resilience to climate change impacts. The city’s Climate Action Plan (CAP), anticipated to be adopted by the Livermore City Council this summer, will create a roadmap to…

The Simple Cloud-Resolving E3SM Atmosphere Model (SCREAM)

Numerical models are a critical tool for predicting Earth’s future climate conditions due to the complex and inter-related processes controlling weather. While simulating the whole planet imposes severe computational challenges, global coverage is nonetheless necessary as local behavior propagates rapidly to distant areas of the globe. To solve these challenges, Peter…

Speeding up detection of climate change response to emission reductions

If humans decrease their greenhouse gas emissions to the atmosphere, how quickly would we detect a slowdown in global warming? In a recent study published in Nature Communications, Lawrence Livermore National Laboratory (LLNL) climate scientist Mark Zelinka and collaborators developed a novel approach to more quickly see the temperature response to strong emissions…

Americans move to more solar and wind power in 2021

The national economy is reenergizing, quite literally. In 2021, Americans used 5% more energy than in 2020, according to the most recent energy flow charts released by Lawrence Livermore National Laboratory (LLNL). Each year, LLNL releases flow charts that illustrate the nation's consumption and use of energy. In 2021, Americans used 97.3 quads (quadrillion BTU) of energy,…

Science on Saturday lectures break down the CO<sub>2</sub> problem

Throughout the month of February, scientists from the Physical and Life Sciences (PLS) directorate virtually participated in three of the four 2022 Science on Saturday (SOS) lectures, presenting on the theme “Energy and the Environment.” The SOS lecture series is an annual collaboration between scientists at Lawrence Livermore National Laboratory (LLNL) and staff members…

GEOSX Simulates Carbon Dioxide Storage

Since the Industrial Revolution, atmospheric carbon dioxide (CO2) levels have continued to rise. While oceans, plants, and soils can sequester some of this CO2 naturally, they cannot capture and remove it all, causing the excess to make its way into the atmosphere. Long-term storage solutions are needed to address the surplus—a contributor to climate change—and help the…

Lawrence Livermore shares recommendations for Microsoft to reach carbon-negative goal

Lawrence Livermore National Laboratory (LLNL) scientists have provided input on Microsoft’s pathway to become carbon-negative by 2030. LLNL researchers built on their pivotal report "Getting to Neutral: Options for Negative Carbon Emissions in California," which has become a trusted adviser in the discussion of how to remove carbon dioxide from the air, to make…

The Path to a Carbon Neutral California

A Livermore report outlines a strategy to reduce California’s carbon emissions to net zero by 2045.

Livermore Lab Foundation, Lawrence Livermore National Lab launch carbon education and outreach program

Helping the general public and students learn about carbon neutrality, the options for carbon dioxide removal, as well as the effects of climate change, is the focus of the Carbon Cleanup Initiative, a unique public awareness partnership from the Livermore Lab Foundation (LLF) and Lawrence Livermore National Laboratory (LLNL). “We are proud to partner with the scientists…

Human-caused climate change increases wildfire activity

The western United States has experienced a rapid increase of fire weather as the vapor pressure deficit (VPD) increases in the area during the warm season. New research by scientists at University of California, Los Angeles (UCLA) and Lawrence Livermore National Laboratory (LLNL) shows that two-thirds (approximately 68 percent) of the increase in VPD is due to human…

New hydrogen storage material steps on the gas

Hydrogen is increasingly viewed as essential to a sustainable world energy economy because it can store surplus renewable power, decarbonize transportation and serve as a zero-emission energy carrier. However, conventional high-pressure or cryogenic storage pose significant technical and engineering challenges. To overcome these challenges, Lawrence Livermore National…

Updated exascale system for earth simulations

A new version of the Energy Exascale Earth System Model (E3SM) is two times faster than its earlier version released in 2018. Earth system models have weather-scale resolution and use advanced computers to simulate aspects of Earth’s variability and anticipate decadal changes that will critically impact the U.S. energy sector in coming years. Version 2 of the Energy…

Just how big was the 2020 Beirut explosion?

On Aug. 4, 2020, one of the largest non-nuclear explosions in history pulverized a Beirut port and damaged more than half the city. The explosion resulted from the detonation of tons of ammonium nitrate, a combustible chemical compound commonly used in agriculture as a high-nitrate fertilizer, but which can also be used to manufacture explosives. Since that time, the…

Climate change in the Sierra Nevada has profoundly altered its lake ecosystems

Climate change has significantly impacted the natural systems of the Sierra Nevada, including the mountain lakes that are an iconic part of California’s natural beauty. New research from a Lawrence Livermore National Laboratory (LLNL) scientist and colleagues from the University of Kentucky (UK) and Indiana State University (ISU) shows that lake-sediment cores from a…

LLNL team wins $15 million to study how microbes affect carbon storage

Do dead microbes control the future of Earth’s climate? A team of researchers led by Lawrence Livermore National Laboratory (LLNL) suspects they might. Using new tools, the team can see which soil organisms are thriving and which are dying in California’s changing climate — and what happens to carbon in their cell biomass when they do. The seven-institution team has just…

R-cubed: Revolutionizing the present, anticipating the future

The Post-Detonation Rapid Response Research Venture — also known as R-cubed or R3 — is combining basic research and development of emergent technologies, predictive capabilities and systems assessment to revolutionize the speed and flexibility of technical nuclear forensic (TNF) response to nuclear events. The venture is a multi-laboratory collaboration led by Lawrence…

What if just one airborne particle was enough to infect you?

For some diseases, exposure to just a single airborne particle containing virus, bacteria or fungi can be infectious. When this happens, understanding and predicting airborne disease spread can be a whole lot easier. That’s the result of a new study by a Lawrence Livermore National Laboratory (LLNL) scientist who developed a new theory of airborne infectious disease spread…